

0957-4166(95)00053-4

New Chiral Aminophosphines and Their Use in Asymmetric Catalysis

Petra Wimmer and Michael Widhalm

Institut für Organische Chemie, Universität Wien, Währingerstr. 38, A-1090 Vienna

Abstract: Chiral aminophosphines 4, 5 and 8 were synthesized from 1 in 34%, 57% and 42% overall yield, respectively. The new ligands were investigated with respect to their efficiency in the allylic alkylation of 1,3-diphenyl-1-acetoxy-2-propene with sodium malonate, the cross-coupling reaction of phenethylmagnesium chloride with vinyl bromide, and asymmetric hydrogenations of unsatured mono- and dicarbonic acids. The highest asymmetric inductions were observed with 4 (dimethyl 1,3-diphenyl-allyl-propandioate, 96% e.e.) and 5 (N-acetyl-phenylalanine, 77% e.e.; methylsuccinic acid, 56% e.e., 3-phenyl-1-butene 47% e.e.).

Besides diphosphine ligands especially aminophosphines have drawn considerable attention as chiral auxiliaries in asymmetric catalysis¹. Only recently attempts have been made to utilize the axial-chiral binaphthyl unit in a bidentate aminophosphine ligand². From a practical point of view compounds such as 4,5 and 8 were attractive candidates as the chiral precursor 1 is easily accessible^{3,4}.

1→2: 2-Bromoaniline, Et₃N, toluene, reflux, 48h, 48%. 1→3: 2-Bromobenzylamine, Et₃N, toluene, reflux, 24h, 80%. 2→4: a) n-BuLi, THF, -40°C, 2.5h; b) Ph₂PCl, 71%. 3→5: a) n-BuLi, THF, -40°C, 2.5h; b) Ph₂PCl, 71%. 1→6: 2-Aminobenzyl alcohol, Et₃N, toluene, reflux, 20h, 79%. 6→7: a) HCl/EtOH; b) SOCl₂/benzene⁶; c) Δ , 81%. 7→8: Ph₂PLi/THF, 0°C, 65%.

Since the length and rigidity of the P-N connecting carbon back bone will determine the "bite-angle" and thus influencing the catalytic activity and enantioselectivity we chose C_2 and C_3 fragments of moderate flexibility to connect the heteroatoms (scheme 1). Haloazepines 2 and 3 were prepared by the reaction of 1 with bromoamines while 7 was accessible via alcohol 6. The corresponding aminophosphines were synthesized either by metal - halogen exchange and subsequent treatment with chlorodiphenylphosphine (4,5) or by reaction of chloride 7 with lithiumdiphenylphosphide (8)⁵. Optically active ligands (+)-4, (+)-5 and (+)-8 were obtained similarly from (-)-(S)- 1^{3a} .

The chiral aminophosphines 4,5 and 8 were tested as auxiliaries in some well known enantioselective catalytic model reactions which are frequently investigated to check scope and limitations of new catalysts.

Asymmetric allylic alkylation: Results of the alkylation of 1,3-diphenyl-2-propenyl-1-acetate with sodium dimethylmalonate catalysed by Pd complexes of 4,5 and 8 are listed in table 1. In all cases the chemical yields were excellent but only 4 exhibited high enantioselectivity. Since the e.e. dropped - especially with 8 - we suspect the presence of monocoordinated intermediates in this case.

Table 1: Allylic alkylation^a

entry	catalyst ^b	isolated yield [%]	% e.e. ^c	product configuration
1	(S)-4 /Pd(OAc) ₂	95	96	S
2	(S)-5 /Pd(OAc) ₂	93	79	S
3	(S)-8 /Pd(OAc) ₂	97	18	S

^a Typical procedure: To a solution of ligand (2mmol), Pd(OAc)₂ (1mmol) and 1,3-diphenyl-2-propenyl-1-acetate (1mmol) in 4ml of THF_{abs}, was added a suspension of sodium malonate (1.5mmol) prepared from NaH (55% dispersion in oil) and dimethyl malonate in 4ml of THF⁷. ^b Prepared in situ. ^c Determined by ^lH NMR using Eu(hfc)₃ in CDCl₃.

Asymmetric cross-coupling reaction: We investigated the cross coupling of phenethylmagnesium chloride with vinyl bromide in the presence of Ni and Pd catalysts (table 2). Only with 5 a moderate enantioselectivity (46% e.e.) was observed with acceptable reaction rate at 0°C for 20h (entry 5). In the other cases reactivity was low and formation of styrene became a dominant side reaction. The same is true for Pd complexes (not included in table 2).

Table 2: Cross-coupling reaction^a

entry	catalyst	isolated yield [%]	styrenec	% e.e.d	product configuration
4	(S)-4/NiCl ₂	55	28	9	R
5	(S)-5/NiCl ₂	67	2	46	R
6	(S)-8 /NiCl ₂	13	34	3	S

^a Reactions were performed in Et₂O on a 7mmol scale following standard procedures⁸.

Asymmetric hydrogenation reactions (table 3) of (Z)-acetamidocinnamic acid (entry 7), itaconic acid (entry 8, 11), mesaconic acid (entry 9) and citraconic acid (entry 10) were catalysed by Rh complexes of 5 and 8 in presence of triethylamine.

Table 3: Hydrogenation^a

entry	catalyst ^b	R ¹	\mathbb{R}^2	\mathbb{R}^3	conversion	[α] _D	% e.e. ^d	product configuration
7	[5Rh(COD)]X ^e	NHAc	Н	Ph	100	+35.4	77	S
8	$[5Rh(COD)]ClO_4\\$	CH_2CO_2H	Н	Н	100	+9.3	55	R
9	$[5 Rh(COD)]ClO_4$	CH_3	$\mathrm{CO}_{2}\mathrm{H}$	Н	67	-6.7	59	S
10 ^f	$[5Rh(COD)]ClO_4$	CH_3	Н	CO_2H	85	-1.9	13	S
11	8Rh(COD)Cl	CH_2CO_2H	Н	Н	100	-7.6	45	S

^a Reactions were run on a 0.5 - 1.0mmol scale with 1mol% of catalyst and Et₃N (1 equivalent per carboxyl group) in 10ml CH₂Cl₂/MeOH (1:1) (neutral complexes) or MeOH (cationic complexes) at 4 atm H₂ and room temperature for 22h unless otherwise noted; work-up procedures as given in the literature were applied¹⁰. ^b Prepared from ligands with (S)-chirality and [Rh(COD)Cl]₂, [Rh(COD)]ClO₄ or [Rh(COD)]BF₄, respectively. ^c Estimated by ¹H NMR (MeOD-d₄ or DMSO-d₆). ^d Estimated on the basis of highest reported values for specific rotations: (S)-N-acetyl-phenylalanine: [α]_D²⁰ +46.0 (c: 1.0, EtOH)¹¹; (R)-2-methyl-succinic acid: [α]_D²⁰ +16.88 (c: 1.8, EtOH_{abs})¹². ^c X = ClO₄ or BF₄. ^f 100h.

^b Prepared in situ. ^c Estimated by ¹H NMR. ^d A commercially available GC column was used: FS-Lipodex-C[®] (Macherey-Nagel, 50m x 0.25mm i.d.)⁹.

Only cationic complexes of 5 revealed moderate optical yields up to 77% e.e. (entries 7-9). Among the isomeric dicarbonic acids citraconic acid was found to be a poor substrate giving only 13% e.e. at a low reaction rate (entry 10). From ligand 8 only a neutral Rh complex could be obtained which exhibited low reactivity and enantioselectivity as shown in entry 11.

Optimization experiments and the extension to other asymmetric reactions are presently under progress.

Acknowledgements

This work was generously supported by the "Fonds zur Förderung der wissenschaftlichen Forschung" (P9233).

References

- ^a H.B. Kagan, Asymmetric Synthesis (Ed.: D.J. Morrison), Academic Press, New York, 1985, Vol. 5, p 1. ^b R. Noyori, M. Kitamura, Modern Synthetic Methods 1989 (Ed.: R. Scheffold) Springer-Verlag, Berlin, 1989, p 115. ^c T. Hayashi, Pure and Appl. Chem. 1988, 60, 7. ^d Ch.G. Frost, J. Howarth, J.M.J. Williams, Tetrahedron: Asymmetry 1992, 3, 1089. ^e K. Yamamoto, J. Wakatsuki, R. Sugimoto, Bull. Chem. Soc. Jpn. 1980, 53, 1132. ^f St.D. Pastor, R. Kesselring, A. Togni, J. Organomet. Chem. 1992, 429, 415.
- During the preparation of this manuscript two papers were published; one of which reports the synthesis of 2-dimethylaminomethyl-2'-diphenylphosphino-1,1'-binaphthyl (Y. Uozumi, N. Suzuki, A. Ogiwara, T. Hayashi, *Tetrahedron* 1994, 50, 4293) and the other one describes the syntheses of 4-(2-diphenylphosphinoethyl)-4H-dinapth[2,1-c:1',2'-e]azepine and 4-(3-diphenylphosphinopropyl)-4H-dinaphth[2,1-c:1',2'-e]azepine and their use in asymmetric catalysis (H. Kubota, K. Koga, *Tetrahedron Lett.* 1994, 35, 6689).

 See also: H. Brunner, W. Zettlmeier, *Handbook of Enantioselective Catalysis*, VCH, Weinheim, 1993.
- ^a N. Maigrot, J.-P. Mazaleyrat, Synthesis 1985, 317. ^b T. Hayashi, K. Hayashizaki, T. Kiyoi, Y. Ito, J.Am.Chem.Soc. 1988, 110, 8153. ^c St.L. Colletti, R.L. Halterman, Organometallics 1991, 10, 3438.
- 4 4H-Dinaphth[2,1-c:1',2'-e]azepine moiety has been successfully employed as chiral auxiliary in asymmetric nucleophilic acylation reactions (N. Maigrot, J.-P. Mazaleyrat, Z. Welvart, J.Org.Chem. 1985, 50, 3916) and asymmetric Michael addition (J.M. Hawkins, G.C. Fu, J.Org.Chem. 1986, 51, 2820; J.M. Hawkins, T.A. Lewis, J.Org.Chem. 1992, 57, 2114; J.M. Hawkins, T.A. Lewis, J.Org.Chem. 1994, 59, 649).
- 5 All new compounds gave correct analytical data and/or HRMS and are characterized by ¹H, ¹³C and ³¹P NMR spectra.
- 6 T. Hayashi, M. Konishi, M. Fukushima, K. Kanehira, T. Hioki, M. Kumada, *J.Org. Chem.* 1983, 48, 2195.
- Y. Okada, T. Minami, Y. Umezu, S. Nishikawa, R. Mori, Y. Nakayama, *Tetrahedron: Asymmetry* 1991, 2, 667.
- 8 T. Hayashi, M. Konishi, M. Fukushima, T. Mise, M. Kagotani, M. Tajika, M. Kumada, J.Am.Chem.Soc. 1982, 104, 180.
- 9 H. Brunner, H.-J. Lautenschlager, W.A. König, R. Krebber, Chem. Ber. 1990, 123, 847.
- 10 H.B. Kagan, T.-P. Dang, J.Am. Chem. Soc. 1972, 94, 6429.
- 11 T.-P. Dang, J.-C. Poulin, H.B. Kagan, J. Organomet. Chem. 1975, 91, 105.
- 12 E. Berner, R. Leonardsen, Liebigs Ann. Chem. 1939, 538,1.