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Abstract: Chiral aminophosphines 4, S and 8 were synthesized from 1 in 34%, 57% and 42%
overall yield, respectively. The new ligands were investigated with respect to their efficiency in
the allylic alkylation of 1,3-diphenyl-1-acetoxy-2-propene with sodium malonate, the cross-
coupling reaction of phenethylmagnesium chloride with vinyl bromide, and asymmetric
hydrogenations of unsatured mono- and dicarbonic acids. The highest asymmetric inductions
were observed with 4 (dimethyl 1,3-diphenyl-allyl-propandioate, 96% e.c.) and § (N-acetyl-
phenylalanine, 77% e.e.; methylsuccinic acid, 56% e.e., 3-phenyl-1-butene 47% e.e.).

Besides diphosphine ligands especially aminophosphines have drawn considerable attention as chiral
auxiliaries in asymmetric catalysisl. Only recently attempts have been made to utilize the axial-chiral
binaphthyl unit in a bidentate aminophosphine ligand®. From a practical point of view compounds such as 4,5

and 8 were attractive candidates as the chiral precursor 1 is easily accessible™*
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1-2: 2-Bromoaniline, Et:N, toluene, reflux, 48h, 48%. 1—3: 2-Bromobenzylamine, Et;N, toluene, reflux,
24h, 80%. 2—4: a) n-BuLi, THF, -40°C, 2.5h; b) Ph,PCl, 71%. 3—5: a) n-BuLi, THF, -40°C, 2.5h; b) Ph,PCl,
71%. 1—6: 2-Aminobenzyl alcohol, Et;N, toluene, reflux, 20h, 79%. 6—7: a) HCYEtOH, b) SOCly/benzene®:
c) A, 81%. 7T-8: PhyPLi/THF, 0°C, 65%.
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Since the length and rigidity of the P-N connecting carbon back bone will determine the "bite-angle” and thus
influencing the catalytic activity and enantioselectivity we chose C; and Cs fragments of moderate flexibility to
connect the heteroatoms (scheme 1). Haloazepines 2 and 3 were prepared by the reaction of 1 with
bromoamines while 7 was accessible via alcohol 6. The corresponding aminophosphines were synthesized
either by metal - halogen exchange and subsequent treatment with chlorodiphenylphosphine (4,5) or by
reaction of chloride 7 with lithiumdiphenylphosphide (8)°. Optically active ligands (+)-4, (+)-5 and (+)-8 were
obtained similarly from (-)—(S)—lh.

The chiral aminophosphines 4,5 and 8 were tested as auxiliaries in some well known enantioselective catalytic

model reactions which are frequently investigated to check scope and limitations of new catalysts.

Asymmetric allylic alkylation: Results of the alkylation of 1,3-diphenyl-2-propenyl-1-acetate with sodium
dimethylmalonate catalysed by Pd complexes of 4,5 and 8 are listed in table 1. In all cases the chemical yields
were excellent but only 4 exhibited high enantioselectivity. Since the e.e. dropped - especially with 8 - we

suspect the presence of monocoordinated intermediates in this case.

Table 1: Allylic alkylation®

OCOCH 1 mol% Pd(OAc), CH(COCHY)
3 CO,CH;  2mol% ligand e

© N e, o

entry catalyst® isolated yield [%] % e.e. product configuration
1 (S)-4 /Pd(OAc), 95 96 S
2 (S)-5 /Pd(OACc), 93 79 S
3 (S)-8 /Pd(OAc), 97 18 S

# Typical procedure: To a solution of ligand (2mmol), Pd(OAc), (1mmol) and 1,3-diphenyl-
2-propenyl-1-acetate (1mmol) in 4ml of THF,,, was added a suspension of sodium malonate
(1.5mmol) prepared from NaH (55% dislpersion in oil) and dimethyl malonate in 4ml of
THF'.® Prepared in situ. © Determined by 'H NMR using Eu(hfc); in CDCls.

Asymmetric cross-coupling reaction: We investigated the cross coupling of phenethylmagnesium chloride
with vinyl bromide in the presence of Ni and Pd catalysts (table 2). Only with 5 a moderate enantioselectivity
(46% e.e.) was observed with acceptable reaction rate at 0°C for 20h (entry 5). In the other cases reactivity was
low and formation of styrene became a dominant side reaction. The same is true for Pd complexes (not

included in table 2).
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Table 2: Cross-coupling reaction’

MgCl 0.5 mol% NiCl, VEN

Br 0.5mol% ligand
+ =/

0°C, Et,0, 20h

entry catalyst isolated yield [%]  styrene® % ee’ product configuration
4 (S)-4 /NiCl, 55 28 9 R
5 (S)-5 /NiCl, 67 2 46 R
6 (S)-8 /NiCl, 13 34 3 S

# Reactions were performed in Et,0 on a 7mmot scale following standard proccduress.
b Prepared in situ. © Estimated by 'HNMR. ¢ A commercially available GC column was used:
FS-Lipodex-C® (Macherey-Nagel, 50m x 0.25mm i.d.)°.

Asymmetric hydrogenation reactions (table 3) of (Z)-acetamidocinnamic acid (entry 7), itaconic acid (entry 8§,

11), mesaconic acid (entry 9) and citraconic acid (entry 10) were catalysed by Rh complexes of § and 8 in
presence of triethylamine.

Table 3: Hydrogenation®

R?  R! 1mol% Rh-catalyst R? R!
— » *
R® COH 4 atm Hy, rt. R*  COH

entry catalyst” R' R’ R’ conversion [a]p % e.e. product configuration
7 [SRh(COD)|X® NHAc H Ph 100 +35.4 77 S

8 [SRh(COD)]Cl04 CH,CO,H H H 100 +9.3 55 R

9 [SRh(COD)]CI04 CHj CO,H H 67 -6.7 59 S

10f [SRh(COD)ICI0Q, CH; H COH 85 -1.9 13 S

11 8Rh(COD)C1 CH,CO,H H H 100 -7.6 45 S

* Reactions were run on a 0.5 - 1.0mmol scale with 1mol% of catalyst and Et;N (1 equivalent per
carboxyl group) in 10ml CH,Cl,/MeOH (1:1) (neutral complexes) or MeOH (cationic complexes) at 4
atm H; and room temperature for 22h unless otherwise noted, work-up procedures as given in the
literature were appliedl .° Prepared from ligands with (S)-chirality and [Rh(COD)Cl],, [Rh(COD)]CIO4
or [Rh(COD)]BF,, respectively. ¢ Estimated by 'H NMR (MeOD-d4 or DMSO-dg). 4 Estimated on the
basis of highest reported values for specific rotations: (S)-N-acetyl-phenylalanine: [odp™® +46.0 (c: 1.0,
EtOH)"'; (R)-2-methyl-succinic acid: [o]p™ +16.88 (c: 1.8, EtOH,)'2. ¢ X = ClO, or BE,. { 100h.
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Only cationic complexes of 5 revealed moderate optical yields up to 77% e.e. (entries 7-9). Among the
isomeric dicarbonic acids citraconic acid was found to be a poor substrate giving only 13% e.e. at a low
reaction rate (entry 10). From ligand 8 only a neutral Rh complex could be obtained which exhibited low
reactivity and enantioselectivity as shown in entry 11.

Optimization experiments and the extension to other asymmetric reactions are presently under progress.
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